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Typically, low-order nonlinearities are much stronger than high-order nonlinearities. In this Letter, we

demonstrate a procedure by which strong high-order nonlinearities can be synthesized out of low-order

nonlinearities. Our procedure involves the use of the previously largely overlooked process of microscopic

cascading, which results from local-field effects. We have performed an experiment that allows us to

distinguish the influence of microscopic cascading from the more-well-known process of macroscopic

cascading, and we find conditions under which microscopic cascading can be the dominant effect. The

ability to create a large high-order nonlinear response could prove useful for applications in quantum-

information science that require the detection of the simultaneous presence of N entangled photons.

DOI: 10.1103/PhysRevLett.103.113902 PACS numbers: 42.65.An, 32.80.Wr

Nonlinear optical interactions hold great promise for
many applications in optical technology and quantum-
information science. The efficient excitation of nonlinear
optical processes requires the use of materials with a strong
nonlinear response. One means of obtaining a large value
of a high-order nonlinear susceptibility is by making use of
a cascaded nonlinear optical interaction, which entails
using a sequence of low-order interactions to mimic a
high-order response. Because lower-order nonlinearities
are typically much stronger than higher-order nonlineari-
ties, cascaded lower-order processes can be much more
efficient than direct higher-order processes. It is useful to
distinguish macroscopic cascading from microscopic cas-
cading. Macroscopic cascading occurs as a result of propa-
gation effects [1]. A classic example is that the intensity-

dependent index of refraction, a �ð3Þ process, can be mim-
icked by a two-step sequence of second-harmonic genera-

tion [�ð2Þð2!;!;!Þ] followed by difference-frequency

generation [�ð2Þð!; 2!;�!Þ]. Microscopic cascading is
more subtle as it entails higher-order effects induced at
the atomic level by means of local-field effects [2,3].

Earlier work has shown that local-field effects can en-
hance the linear [4] and nonlinear optical response for both
homogeneous [5] and composite [6] optical materials. In a
collection of three-level atoms, local-field effects can lead
to inversionless gain and the enhancement of the absorp-
tionless refractive index by more than 2 orders of magni-
tude [7]. In our recent publication [8], we showed how
local-field effects [9] can act as a mechanism that leads to a
cascaded microscopic nonlinear response. In particular, we
considered nonlinear effects in a centrosymmetric me-
dium, and we showed explicitly how the lowest-order
hyperpolarizability can lead to a contribution to the fifth-

order susceptibility �ð5Þ [8]. In this Letter, we report an
experiment that verifies the existence of this microscopic

cascaded contribution to �ð5Þ.
Bedeaux and Bloembergen first demonstrated that local-

field effects can lead to microscopic cascaded contribu-

tions of the second-order hyperpolarizability �ð2Þ
at to the

third-order susceptibility �ð3Þ [2]. All follow-up studies
conducted thus far (e.g., [3]) have concentrated on treating

the local cascaded contribution of �ð2Þ
at to third-order non-

linear effects.
In contrast, in our recent theoretical article [8], we

treated the local-field-corrected fifth-order nonlinear sus-
ceptibility using two independent theoretical approaches.
The first approach was based on the Maxwell–Bloch equa-
tions for a collection of two-level atoms [10], while the
second approach was a more general treatment of local-
field effects, based on Bloembergen’s prescription [11].
Both approaches resulted in identical expressions for the
local-field-corrected linear and nonlinear susceptibilities.
It is convenient to represent these results in the form of the
equations

�ð1Þ
LFC ¼ N�ð1Þ

at L; (1a)

�ð3Þ
LFC ¼ N�ð3Þ

at jLj2L2; (1b)

�ð5Þ
LFC ¼ �ð5Þ

dir þ �ð5Þ
micro; (1c)

where we have written the fifth-order response as the sum
of the two contributions

�ð5Þ
dir ¼ N�ð5Þ

at jLj4L2; (2a)

�ð5Þ
micro ¼

24�

10
N2ð�ð3Þ

at Þ2jLj4L3 þ 12�

10
N2j�ð3Þ

at j2jLj6L: (2b)

Here, �ðiÞ
LFC is the local-field corrected susceptibility of

order i, �ð1Þ
at is the microscopic linear polarizability, �ðiÞ

at ,
i > 1 is the microscopic hyperpolarizability of order i, N is
the molecular or atomic density, and L is the local-field
correction factor [9]. The first contribution to the local-

field-corrected fifth-order susceptibility, �ð5Þ
dir of Eq. (2a),

is a direct contribution from the fifth-order microscopic

hyperpolarizability. The second contribution, �ð5Þ
micro of

Eq. (2b), coming from the third-order microscopic hyper-
polarizability, indicates the presence of microscopic cas-
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cading in �ð5Þ
LFC. This microscopic cascaded contribution to

�ð5Þ
LFC is purely a manifestation of local-field effects. Based

on the predictions of Eq. (2b), it should be possible to use
microscopic cascading to induce a large cross section for
three-photon absorption (which is proportional to the

imaginary part of �ð5Þ) by making use of a material with

a large value of �ð3Þ
at . The ability to excite three-photon

absorption efficiently could have important implications to
nonlinear microscopy and to quantum imaging. Such con-
siderations motivated us to undertake a proof-of-principle
experiment designed to demonstrate this microscopic cas-

caded contribution to �ð5Þ.
Our experiment is based on a degenerate multi-wave

mixing (DMWM) scheme [12] (see Fig. 1) that allows one
to separate the effects of different orders of nonlinearity.
Two beams of equal intensity at 532 nm from a frequency-
doubled Nd:YAG laser producing 35-ps pulses were sent
into a 2-mm quartz cell containing a mixture of carbon
disulfide (CS2) and fullerene C60. Self-diffraction phe-
nomena (see the photograph in Fig. 1) were observed.
The first-order diffracted beam occurs as a consequence

of �ð3Þ, whereas the second-order beam results from �ð5Þ.
It is clear from Eqs. (2) that �ð5Þ

dir is proportional to N,

whereas �ð5Þ
micro is proportional to N2. Hence, in order to

experimentally separate the two contributions to the fifth-

order susceptibility, we measured �ð5Þ as a function of the
molecular density NC60

of C60 in CS2. For calibration

reasons, we also measured the dependence for �ð3Þ. In
order to correct the nonlinear signals for the absorption
present in the medium, we measured the linear absorption
coefficient � and multiplied our nonlinear signal inten-
sities by the factor f�l expð�l=2Þ=½1� expð��lÞ�g2n,
where l is the length of the nonlinear medium and 2nþ
1 is the order of the nonlinearity. We also performed an
open-aperture Z-scan measurement [13] to account for
nonlinear absorption. After extracting the values of the
normalized transmission Tnorm from the Z-scan measure-
ments, we divided our nonlinear intensities by ðTnormÞ2nþ1.
The third- and fifth-order nonlinear signal intensities, cor-
rected for the linear and nonlinear absorptions and plotted
on a logarithmic scale as functions of the incident beam
intensity, displayed slopes of 3 and 5, respectively.

The DMWM experiment yields the absolute values of
the nonlinear susceptibilities. In order to extract these
values from the measured intensities of the diffracted
beams, we used the expression [12]

Is ¼ j�ð2nþ1Þ
meas j2I2nþ1

p

�
8�

n0c

�
2n
�
2�!l

n0c

�
2jFð�Þj2; (3)

relating the measured intensity Is of the nonlinear signal to

the corresponding nonlinear susceptibility j�ð2nþ1Þ
meas j. Here,

Ip is the intensity of either incident beam, c is the speed of

light in vacuo, n0 is the refractive index of the medium, � is
a half-angle between the interacting beams in a DMWM
configuration, and Fð�Þ is the phase mismatch term nor-
malized such that jFð0Þj ¼ 1. Fð�Þ takes different forms
for different orders of nonlinearities. For our range of
molecular number densities N, Fð�Þ is a purely geometri-
cal factor not depending on N. Substituting the measured
intensity of the nonlinear signal for a mixture of CS2 and
C60 into Eq. (3) and taking the ratio of the resulting
equation to Eq. (3) with the measured intensity and known

value �ð3Þ ¼ 2:2� 10�12 esu [10] for pure CS2, we find
the unknown nonlinear susceptibilities.

In Fig. 2, we present the measured values of j�ð3Þj and
j�ð5Þ

effFð�Þj as functions of the molar concentration NC60
of

C60. In this Letter, we do not attempt to correct the values

of �ð5Þ
eff for the phase mismatch, as we cannot precisely

determine the value of Fð�Þ because this factor depends
extremely sensitively on the alignment of our experimental

setup. We instead plot the product j�ð5Þ
effFð�Þj, as we can

extract its values directly from our data using Eq. (3). We

were able to extract pure values of j�ð3Þj because of the
cancellation of the phase mismatch term Fð�Þ upon taking

the ratios of Eq. (3) for j�ð3Þj signals of the mixtures of CS2
and C60 and pure CS2.
CS2 and C60 have nonlinear responses of opposite sign,

which is why both the third- and fifth-order nonlinear
susceptibilities in Fig. 2 decrease with the increase of

NC60
. It is clear from the graphs that j�ð3Þj depends linearly

on NC60
, whereas j�ð5Þ

eff j has a quadratic dependence due to
cascading. However, the total measured fifth-order suscep-

FIG. 1 (color online). Experimental setup. Nd:YAG—laser
source, BS—beam splitter, P—prism, L—focusing lens, �ð3Þ
and �ð5Þ denote the signals associated with these nonlinear
processes.
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FIG. 2 (color online). Typical experimental data for (a) third-
order and (b) fifth-order nonlinear susceptibilities as functions of
NC60

. The lines represent a least-square fit with a function (a)

linear and (b) quadratic with respect to NC60
.
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tibility also includes the macroscopic (propagational) cas-

caded contribution j�ð5Þ
macroj,

j�ð5Þ
effj ¼ j�ð5Þ

LFC þ �ð5Þ
macroj ¼ j�ð5Þ

dir þ �ð5Þ
micro þ �ð5Þ

macroj: (4)

Both microscopic and macroscopic cascaded effects have a
quadratic dependence on the atomic density [2], and we
thus need to separate the influence of these two
contributions.

To determine how to isolate the microscopic cascaded
contribution, we solved the driven wave equation [10] for

the direct and microscopic cascaded contributions to j�ð5Þ
eff j,

and, separately, for the macroscopic-cascaded contribu-
tion. The direct and microscopic cascaded contributions

to j�ð5Þ
effj have the same dependence on phase mismatch, as

they both are intrinsic properties of the nonlinear response
on the molecular scale. However, the phase mismatch for

�ð5Þ
macro is different from that for�ð5Þ

dir and�
ð5Þ
micro. In Fig. 3, we

plot the calculated efficiencies of the direct and micro-
scopic cascaded contributions (solid line) and the macro-
scopic cascaded contribution (dashed line) as functions of
the half-angle � between the interacting beams, normalized
to unity at � ¼ 0. The graphs show positions of the minima
and maxima of the efficiencies. It is important to note that
the efficiency of the macroscopic cascaded process de-
creases much more rapidly than that of the direct and
microscopic cascaded contributions with an increase of
the half-angle � between the interacting beams. Thus, by
measuring the third- and fifth-order nonlinear signals for
different values of �, it is possible to discriminate among

the different contributions to j�ð5Þ
effj.

The macroscopic cascaded contribution to the total elec-
tric field generated by the fifth-order nonlinear process is

proportional to j�ð3Þj2. Hence, we can write j�ð5Þ
macroFð�Þj ¼

Cmj�ð3Þj2, where Cm is some parameter independent of
NC60

. Neglecting the direct and microscopic cascaded con-

tributions to the fifth-order susceptibility of pure CS2, as

their values do not change the dependence of j�ð5Þ
effj onNC60

,

we can find Cm from the ratio j�ð5Þ
effFð�Þj=j�ð3Þj2 at NC60

¼
0. Then, multiplying j�ð3Þj2 by the value of Cm, we find

j�ð5Þ
macroFð�Þj.
We have measured the nonlinear susceptibilities at four

values of the angle between the interacting beams (marked
in Fig. 3 with thick vertical lines with numbers on top). The
results of the measurements are shown in Fig. 4 where we

plot the values of j�ð5Þ
effFð�Þj and j�ð5Þ

macroFð�Þj as functions
of the C60 concentration.
For � � 0:3�, corresponding to position 1 in Fig. 3, we

observed no difference between the j�ð5Þ
effFð�Þj and

j�ð5Þ
macroFð�Þj [see Fig. 4(a)]. This fact shows that for this

experimental geometry the macroscopic cascaded contri-

bution to j�ð5Þ
effj is much larger than the direct and micro-

scopic cascaded contributions. We then repeated this
measurement for successively increasing values of �.
These results are shown in parts (b) through (d) of Fig. 4.
We see that as the crossing angle is increased, the differ-

ence between j�ð5Þ
effFð�Þj and j�ð5Þ

macroFð�Þj becomes more

and more pronounced. This difference is clearly seen in
plots (c) and (d). These plots correspond to positions 3 and
4 in Fig. 3, which are very close to a minimum of the
macroscopic cascading efficiency curve.
The data of Fig. 4(d) show that, under our experimental

conditions, the microscopic cascaded term makes a large

contribution to j�ð5Þ
effj. This conclusion follows qualitatively

from the fact that j�ð5Þ
effFð�Þj is significantly different from

j�ð5Þ
macroFð�Þj and shows a pronounced quadratic depen-
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FIG. 4 (color online). Experimentally measured j�ð5Þ
effFð�Þj and

j�ð5Þ
macroFð�Þj as functions of NC60

. The measurements are done at

the angles between the interacting beams corresponding to
(a) position 1 in Fig. 3, (b) position 2, (c) position 3, and
(d) position 4. The least-square fits to the experimental data
are shown with lines.
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dence upon N not seen in j�ð5Þ
macroFð�Þj. However, we are

not able to extract a precise value for j�ð5Þ
microj from our data

because each of the contributions to the measured signal is
a complex quantity of unknown complex phase. We have
however analyzed our data in two different ways, and each
analysis supports the conclusion of a large microscopic

cascaded contribution to j�ð5Þ
eff j. Our first procedure is to

assume that all three contributions have the same com-
plex phase, as is the case for typical parametric nonline-
arities. We then fit our data to the predictions of Eq. (4)

by assuming that j�ð5Þ
directj scales linearly with NC60

and

that j�ð5Þ
microj and j�ð5Þ

macroj scale quadratically with NC60
.

Such an analysis leads to the conclusion that the non-
linear coefficients for NC60

¼ 2 mM=L are given by

j�ð5Þ
macroFð�Þj ¼ 9:4� 10�23 esu and j�ð5Þ

dirFð�Þj �
j�ð5Þ

microFð�Þj � 1:2� 10�22 esu.
Our second method of analysis is to allow each of the

three contributions to j�ð5Þ
effj to have an unknown but fixed

phase. For this choice of phases, we perform a fit to our

data to determine the values of j�ð5Þ
dir j and j�ð5Þ

microj. We

repeat this analysis for all possible values of the relative
phase at intervals of �=8 radians. We find that for most of
these relative phases the fitting procedure gives precise
predictions for the fit parameters. However, in a few situ-
ations, the data can be fit by a wide range of values of the fit
parameters. In the results quoted below, we include only
those cases for which the uncertainty in the value of the fit
parameter is less than 30%. We find that, for NC60

¼
2 mM=L, the value of j�ð5Þ

dir j is in the range 2.2 to 3:7�
10�22 esu and that j�ð5Þ

microj is in the range 1.8 to 3:7�
10�22 esu with j�ð5Þ

macroj ¼ 9:4� 10�23 esu. We also find

that the ratio of the parts of j�ð5Þ
microj and j�ð5Þ

macroj that scale
quadratically with the concentration NC60

lies somewhere

in the range [2.6, 5.5]. This implies that for any NC60
, the

quadratic part of j�ð5Þ
microj is several times larger than that of

j�ð5Þ
macroj.
In conclusion, we have experimentally demonstrated the

existence of a local-field-induced microscopic cascaded
contribution to the total fifth-order susceptibility. We
have also determined the conditions under which this con-
tribution is most significant. Even though it is sometimes
easier to make use of a macroscopic cascaded process, this
contribution is not always available. For example, for some
experimental geometries, it is not possible to obtain a large
macroscopic cascaded contribution, as is demonstrated in
some of our experimental data. Also, in certain situations,
such as those involving thin films, this contribution would
be expected to be very weak. Moreover, absorption is
always a local phenomenon, and thus macroscopic cascad-

ing makes no contribution to absorption processes, includ-
ing multiphoton absorption. Thus, local-field-induced,
microscopic cascaded nonlinearities are extremely impor-
tant as they can potentially be made stronger than any other
contribution to a high-order nonlinear process. The field of
quantum-information science would benefit from the ex-
istence of efficient multiphoton absorbing materials. The
results presented in this Letter may constitute an important
first step in developing new nonlinear material for use in
these applications.
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